A New Class of Metrics for Spike Trains
نویسندگان
چکیده
The distance between a pair of spike trains, quantifying the differences between them, can be measured using various metrics. Here we introduce a new class of spike train metrics, inspired by the Pompeiu-Hausdorff distance, and compare them with existing metrics. Some of our new metrics (the modulus-metric and the max-metric) have characteristics that are qualitatively different from those of classical metrics like the van Rossum distance or the Victor and Purpura distance. The modulus-metric and the max-metric are particularly suitable for measuring distances between spike trains where information is encoded in bursts, but the number and the timing of spikes inside a burst do not carry information. The modulus-metric does not depend on any parameters and can be computed using a fast algorithm whose time depends linearly on the number of spikes in the two spike trains. We also introduce localized versions of the new metrics, which could have the biologically relevant interpretation of measuring the differences between spike trains as they are perceived at a particular moment in time by a neuron receiving these spike trains.
منابع مشابه
Spike train metrics.
Quantifying similarity and dissimilarity of spike trains is an important requisite for understanding neural codes. Spike metrics constitute a class of approaches to this problem. In contrast to most signal-processing methods, spike metrics operate on time series of all-or-none events, and are, thus, particularly appropriate for extracellularly recorded neural signals. The spike metric approach ...
متن کاملMetric-space analysis of spike trains: theory, algorithms, and application
We present the mathematical basis of a new approach to the analysis of temporal coding. The foundation of the approach is the construction of several families of novel distances (metrics) between neuronal impulse trains. In contrast to most previous approaches to the analysis of temporal coding, the present approach does not attempt to embed impulse trains in a vector space, and does not assume...
متن کاملA New Multineuron Spike Train Metric
The Victor-Purpura spike train metric has recently been extended to a family of multineuron metrics and used to analyze spike trains recorded simultaneously from pairs of proximate neurons. The metric is one of the two metrics commonly used for quantifying the distance between two spike trains; the other is the van Rossum metric. Here, we suggest an extension of the van Rossum metric to a multi...
متن کاملTowards statistical summaries of spike train data.
Statistical inference has an important role in analysis of neural spike trains. While current approaches are mostly model-based, and designed for capturing the temporal evolution of the underlying stochastic processes, we focus on a data-driven approach where statistics are defined and computed in function spaces where individual spike trains are viewed as points. The first contribution of this...
متن کاملLinking non-binned spike train kernels to several existing spike train metrics
This work presents two kernels which can be applied to sets of spike times. This allows the use of state-of-the-art classification techniques to spike trains. The presented kernels are closely related to several recent and often used spike train metrics. One of the main advantages is that it does not require the spike trains to be binned. A high temporal resolution is thus preserved which is ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 26 2 شماره
صفحات -
تاریخ انتشار 2014